Plasma membrane aquaporins mediates vesicle stability in broccoli

نویسندگان

  • Maria Del Carmen Martínez-Ballesta
  • Pablo García-Gomez
  • Lucía Yepes-Molina
  • Angel L Guarnizo
  • José A Teruel
  • Micaela Carvajal
چکیده

The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity.

Salinity stress is known to modify the plasma membrane lipid and protein composition of plant cells. In this work, we determined the effects of salt stress on the lipid composition of broccoli root plasma membrane vesicles and investigated how these changes could affect water transport via aquaporins. Brassica oleracea L. var. Italica plants treated with different levels of NaCl (0, 40 or 80mM)...

متن کامل

Analysis of root plasma membrane aquaporins from Brassica oleracea: post-translational modifications, de novo sequencing and detection of isoforms by high resolution mass spectrometry.

Plasma membrane Intrinsic Proteins (PIPs), a subfamily of aquaporins, are ubiquitous membrane channel proteins that play a crucial role in water uptake in plants. The use of high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) analysis of peptides has previously shown to be a valuable tool to differentiate among PIP homologues sharing a high sequence homology ...

متن کامل

Methylation of aquaporins in plant plasma membrane.

A thorough analysis, using MS, of aquaporins expressed in plant root PM (plasma membrane) was performed, with the objective of revealing novel post-translational regulations. Here we show that the N-terminal tail of PIP (PM intrinsic protein) aquaporins can exhibit multiple modifications and is differentially processed between members of the PIP1 and PIP2 subclasses. Thus the initiating methion...

متن کامل

Mercury-induced conformational changes and identification of conserved surface loops in plasma membrane aquaporins from higher plants. Topology of PMIP31 from Beta vulgaris L.

Aquaporins are integral membrane proteins occurring in mammals, plants, and microorganisms, which serve as channels that permit the bidirectional passage of water through cellular membranes. Higher plants contain abundant levels of aquaporins in both the tonoplast and plasma membrane. Aquaporins contain six transmembrane segments with three surface loops located at the apoplastic face of the me...

متن کامل

Reconstitution of water channel function of aquaporins 1 and 2 by expression in yeast secretory vesicles.

Aquaporins 1 (AQP1) and 2 (AQP2) were expressed in the yeast secretory mutant sec6-4. The mutant accumulates post-Golgi, plasma membrane-targeted vesicles and may be used to produce large quantities of membrane proteins. AQP1 or AQP2 were inducibly expressed in yeast and were localized within isolated sec6-4 vesicles by immunoblot analysis. Secretory vesicles containing AQP1 and AQP2 exhibited ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018